
Additional CDAT Packages:
Climate Data Specific

Utilities: The cdutil Package

cdutil - overview

• The cdutil Package contains a collection of sub-
packages useful to deal with Climate Data

• Sub-components are:
– times: a collection of tools to deal with the time dimension,

mostly seasonal average
– region: a “region” selector for rectilinear grids
– vertical: already seen earlier in the course
– averager: already dealt with earlier in the course
– continents_fill # Emulate a VCS graphic method to display

filled continents
– VariableConditioner and VariablesMatcher: A superset of

the regridder and time extraction tools, see CDAT doc.

cdutil - “times” module (1)

• The cdutil.times module allow the user to manipulate
time axes easily, and is mostly geared toward seasonal
extraction.

• All seasonal extractions in this module are based on
“bounds”, therefore a few function have been created to
allow the user to reset the bounds correctly (remember
that by default the “time” axis doesn’t have any bounds
unless they are in the file).

• These functions are:
cdutil.times.setTimeBoundsMonthly(slab/axis)
cdutil.times.setTimeBoundsYearly(slab/axis)
cdutil.times.setTimeBoundsDaily(slab/axis,frequency=)

cdutil - “times” module (2)

• Once the time bounds are set correctly you can use
one of the pre-defined seasonal extractor, or create
your own.

• Predefined seasonal extractor are:
– JAN/FEB/…/DEC <--> ANNUALCYCLE
– DJF/MAM/JJA/SON <--> SEASONALCYCLE
– YEAR

• Creating your own:
JFMAM=cdutil.times.Seasons(‘JFMAM’)

cdutil – “times” module (3)

• Once you created your season extractor, using it is
fairly easy:

djf=cdutil.times.DJF(slab)
will return all DJFs computable in your slab

• Additional arguments can be passed, the default
needs 50% of the season to be present order to
assign a value

cdutil – “times” module (4)

• In addition, season extractors have 2 functions:

– climatology: which basically computes the average of all
seasons passed, therefore, ANNUALCYCLE.climatology, will
return the 12 month annual cycle for the slab:
Ac=cdutil.times.ANNUALCYCLE.climatology(slab)

– departures: which given an optional climatology will compute
seasonal departures from it.
Dep=cdutil.times.ANNUALCYCLE.departures(slab,Ac)
Note that since Ac has been computed over the entire time period of slab,

passing Ac here was superfluous

• See the documentation for more information:
http://esg.llnl.gov/cdat/cdat_utilities/cdat_utilities-1.htm#pgfId-998297

http://esg.llnl.gov/cdat/cdat_utilities/cdat_utilities-1.htm#pgfId-998297

cdutil - “region” module

• The cdutil.region module allows the user to extract a
region “exactly”. i.e. resetting the latitude and
longitude bounds to match the area “exactly”,
therefore computing an “exact” average when passed
to the averager function.

• Predefined regions are:
– AntarcticZone, AAZ (South of latitude 66.6S)
– ArcticZone, AZ (North of latitude 66.6N)
– NorthernHemisphere, NH # useful for dataset with latitude

crossing the equator
– SouthernHemisphere, SH
– Tropics (latitudes band: 23.4S, 23.4N)

cdutil - region” module

• Creating your selector:
myselector=cdutil.region.domain(latitude=(lat1,l

at2), longitude=(lon1,lon2)) # can be any
dimension, but very useful for lat/lon

• Using the selector:
slab2=slab1(Myselector)

cdutil – “continent_fill” module

The continents_fill module emulates a VCS graphic
method to display filled contents.

There are 4 steps:
1. Plot your normal plot
2. Create your cf “method”
3. Set cf attributes:

Fill, fill_color, line, line_color, line_width, projection
4. Plot using the cf, plot method, passing x:

cf.plot(x=None,template=None,bg=0,ratio=None)

Additional CDAT Packages:
General Utilities : The

genutil Package

General Utilities : genutil

• The “genutil” Package contains tools not necessarily specific for
Climate Data.

• Sub-components are:
– statistics
– arrayindexing
– grower
– picker
– minmax
– udunits
– filters
– statusbar
– color

genutil - “statistics”

• The statistic module provides the user with some
basic statistics function:

– (auto)correlation
– (auto)covariance
– geometricmean
– laggedcorrelation
– laggedcovariance
– linearregression

– meanabsdiff
– median
– rank
– rms
– std
– variance

• CDAT documentation and doc string develop these:
>>> help(genutil.statistics.geometricmean)

genutil - “statistics” – correlation (1)

• genutil.statistics.correlation() returns the correlation
between 2 slabs. By default on the first dimension,
centered and biased by default.

• Slabs must be of the same shape and size.

Usage:
result = correlation(slab1, slab2,

weights=weightoptions, axis=axisoptions,
centered=centeredoptions,
biased=biasedoptions)

Options:
weightoptions

default = None. If you want to compute the weighted
correlation, provide the weights here.

NOTE: the weights array must be the same shape and
size as the slabs.

genutil - “statistics” – correlation (2)

Options (continued):
axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ |
‘(dimension_name)’ | 0 | 1 ... | n
default value = 0. You can pass the name of
the dimension or index (integer value 0...n)
over which you want to compute the
statistic.

centeredoptions None | 0 | 1
default value = 1 removes the mean first.
Set to 0 or None for uncentered.

biasedoptions None | 0 | 1
default value = 1 returns biased statistic.
If want to compute an unbiased statistic
pass anything but 1.

genutil - “statistics” – correlation (3)

Example:
>>> import cdms, genutil
>>> f=cdms.open(‘file1.nc’)

>>> var1=f(‘u_wind’)
>>> var2=f(‘v_wind’)
>>> corr=genutil.statistics.correlation(var1, var2,

axis=“tzyx”)
>>> print corr
correlation

array(-0.237745400348)

genutil - “statistics” – std (1)

• genutil.statistics.std() returns the standard deviation
from a slab. By default on first dimension, centered,
and biased.

Usage:
result = std(slab, weights=weightoptions, axis =

axisoptions, centered=centeredoptions, biased
= biasedoptions)

Options:
weightoptions

default = None. If you want to compute the weighted
correlation, provide the weights here.

NOTE: the weights array must be the same shape and
size as the slab.

genutil - “statistics” – std (2)

Options (continued):
axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ |
‘(dimension_name)’ | 0 | 1 ... | n
default value = 0. You can pass the name of
the dimension or index (integer value 0...n)
over which you want to compute the
statistic.

centeredoptions None | 0 | 1
default value = 1 removes the mean first.
Set to 0 or None for uncentered.

biasedoptions None | 0 | 1
default value = 1 returns biased statistic.
If want to compute an unbiased statistic
pass anything but 1.

genutil - “statistics” – std (3)

Example:
>>> import cdms, genutil
>>> f=cdms.open(‘file1.nc’)

>>> var1=f(‘u_wind’)
>>> var1.shape # just a linear variable
(9,)

We want to set some weights to add importance to
the higher range of values
>>> wghts=[0.2, 0.3, 0.5, 0.6, 1.0, 1.0, 1.2, 1.4,

1.0]
>>> std=genutil.statistics.std(var1, weights=wghts)
>>> print std

0.73401665568359065

genutil – “arrayindexing” (1)

• “arrayindexing” allows the user to do exactly
what its name says, setting or retrieving parts
of a slab, not via a single array, but via an
array representing which index to get at each
cell. i.e:

C=Array[Indices] # where Indices is an array

genutil – “arrayindexing” (2)
Example:
>>> A=MV.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
>>> I=MV.array([0,0,0,0])
>>> genutil.arrayindexing.get(A,I)
variable_21
array([1,2,3,])
>>> A[0]
variable_21
array([1,2,3,])

>>> A[1]
variable_21
array([4,5,6,])

>>> I=MV.array([1,0,1,0])
>>> genutil.arrayindexing.get(A,I)
variable_21
array([4,5,6,])

The “grower” function

>>> help(genutil.grower)
Help on function grower:

grower(x, y, singleton=0)
Function: grower

Description of function:
This function takes 2 transient variables and grows them to
match their axes.

Usage:
x, y = grower(x, y, singleton=singletonoption)

Options:
singletonoption 0 | 1
Default = 0 If singletonoption is set to 1 then an error is
raised if one of the dims is not a singleton dimension.

genutil - “picker” (1)

• “picker” allows to select non contiguous values of an
axis, for example:
mypick=genutil.picker(level=(100,850,200))
s2=s(mypick)

• An additional “match” keyword can be provided to the
picker.

• If “match” is set to 1 then all requested values must be
present, if set to 0 then non-existent values will be
returned with “missing_value” everywhere, if set to -1,
then non-existent requested values will be skipped.

genutil - “picker” (2)

• This picker example shows how you can do strange
things to your variable very quickly and easily.
Suppose you wanted to select a discrete number of
latitudes (10°N, 43°N, 86°N and 90°N):

>>> import cdms, genutil
>>> var=cdms.open(‘myfile.nc’)(‘myvariable’)
>>> mypick=genutil.picker(latitude=(10, 43, 86, 90))
>>> newvar=var(mypick)
>>> print newvar.getLatitude()[:]
[10., 43., 86., 90.,]

genutil - “udunits”

• The “udunits” module is a python port of the
C/Fortran “udunits” conversion package:
>>> from genutil import udunits
>>> print udunits.__doc__ # OR help(udunits)
>>> from genutil import udunits
>>> myunit=udunits(5.6, "m s**-1")
>>> myunit.to("knot")
udunits(10.8855291577,"knot")

• To search units for keyword “meter”:
>>> for unit in myunit.known_units():
... if unit.find("meter")>-1:
... print unit

genutil - “minmax” and ”filter”

• The “minmax” function returns the minimum and
maximum values of anything that is passed to it, you
can use mixed types. Note that vcs has its own
minmax, the difference is that the “vcs” version masks
everything greater than 1.E20 (in absolute value).

• The “filter” module is in its early stage and contains at
this point very minimal filtering capabilities: “running
average”, “self build weights based filters” and “121
smooth” filter.

genutil - “colors” and ”statusbar”

• The “colors” module is identical to that in vcs.

• The statusbar module allows for either GUI or prompt
based “statusbar” telling to inform the user when
some processing is taking place.
– Example:

prev=0

for I in range(1000):
prev=genutil.statusbar(I,total=1000,

title=‘Status:’,prev=prev)

Status: | 0.00%>>>Status: ################### | 50.00%>>>Status: ##| 99.90%>>>

	Additional CDAT Packages:�Climate Data Specific Utilities: The cdutil Package
	cdutil - overview
	cdutil - “times” module (1)
	cdutil - “times” module (2)
	cdutil – “times” module (3)
	cdutil – “times” module (4)
	cdutil - “region” module
	cdutil - region” module
	cdutil – “continent_fill” module
	Additional CDAT Packages:�General Utilities : The genutil Package
	General Utilities : genutil
	genutil - “statistics”
	genutil - “statistics” – correlation (1)
	genutil - “statistics” – correlation (2)
	genutil - “statistics” – correlation (3)
	genutil - “statistics” – std (1)
	genutil - “statistics” – std (2)
	genutil - “statistics” – std (3)
	genutil – “arrayindexing” (1)
	genutil – “arrayindexing” (2)
	The “grower” function
	genutil - “picker” (1)
	genutil - “picker” (2)
	genutil - “udunits”
	genutil - “minmax” and ”filter” �
	genutil - “colors” and ”statusbar”

